Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

Современные электромеханические преобразователи, несмотря на высокую эффективность, все же не обходятся без некоторых потерь энергии, как магнитной, так и электрической и механической. Эти потери сопровождаются выделением тепла, усилением шума и вибрации, которые обусловлены неизбежным трением элементов, перемагничиванием в магнитном поле сердечника якоря электродвигателя, а также скачками нагрузок.

В связи с этим возникает вопрос: можно ли снизить такие "утечки" и, в итоге, повысить коэффициент полезного действия системы? Если да, то как это достичь? Для ответа на эти вопросы мы и подготовили данную статью.

Современные методы для улучшения КПД асинхронных двигателей

По общепринятой классификации, электрические машины бывают синхронными и асинхронными. Синхронные машины имеют одинаковую частоту вращения ротора и магнитного поля, тогда как магнитное поле асинхронных машин вращается с более высокой скоростью, чем ротор. Асинхронные электродвигатели более популярны и пользуются более широким распространением: около 90% всех электродвигателей на планете являются асинхронными. Они используются во многих отраслях, включая промышленность, сельское хозяйство и сферу ЖКХ. Это происходит потому, что такие механизмы просты в производстве, достаточно надежны, экономичны и не требуют больших затрат на эксплуатацию. Кроме того, КПД асинхронных электродвигателей гораздо выше, чем у синхронных.

Однако эта техника также имеет существенные недостатки. Например, высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что может привести к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и снижению КПД в периоды пониженной нагрузки), а также невозможность точной регулировки скорости работы механизма. Все эти факторы значительно снижают эффективность работы системы.

В настоящее время производители стремятся улучшить КПД асинхронных электродвигателей. Существуют различные методы для достижения этой цели. Использование частотно-управляемых преобразователей позволяет регулировать частоту вращения мотора и величину подаваемого напряжения, что позволяет снизить пусковой ток и улучшить точность регулировки скорости. Кроме того, установка встроенного электронного устройства контроля и регулирования может существенно повысить КПД системы. Новые технологии и материалы также могут улучшить работу электродвигателей.

Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.

В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.

Достоинства и недостатки контроллеров-оптимизаторов

Контроллеры-оптимизаторы могут быстро реагировать на изменение напряжения, что снижает расходы электроэнергии на 30–40%, сокращает влияние реактивной нагрузки на сеть, повышает КПД привода, позволяет сократить расходы на конденсаторные компенсирующие устройства, а также продлевает срок службы оборудования и повышает экологичность производства. Отличительной особенностью контроллеров также является более доступная цена по сравнению с преобразователями частоты.

Однако стоит отметить, что контроллеры-оптимизаторы имеют ограничение в использовании в тех случаях, когда необходимо изменять скорость вращения электродвигателя. Таким образом, при выборе контроллера следует учитывать этот момент и выбирать оптимальный вариант, учитывая конкретную ситуацию и потребности.

Как выбрать лучшее оборудование для повышения КПД

Если вы планируете повысить КПД двигателя своего оборудования, важно правильно выбрать устройство для этой задачи. Выбор будет зависеть от особенностей работы оборудования. Если необходимо изменять скорость привода, то единственно подходящим решением будет приобретение преобразователя частоты. Однако, если скорость вращения двигателя остается неизменной или не требует большой точности изменения, то лучшим решением будет использование контроллеров-оптимизаторов. Они имеют более доступную стоимость по сравнению с преобразователями частоты.

Ключевыми факторами, влияющими на КПД электродвигателя, является несколько факторов, включая степень его загрузки относительно номинальной, конструкцию, модель, износ, а также отклонение напряжения в сети от номинального значения. Не стоит забывать, что после перемотки КПД электродвигателя может снизиться. Для более эффективной работы электропривода рекомендуется обеспечивать минимальную загрузку не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту питающего тока. Повышение КПД двигателя может быть достигнуто с помощью специального оборудования, однако не всегда нужно или возможно реализовать все эти меры.

Для улучшения КПД используются различные приборы, в том числе частотные преобразователи, которые изменяют скорость двигателя, изменяя частоту питающего напряжения. Также используются устройства плавного пуска, которые ограничивают скорость нарастания пускового тока и его максимальное значение. В этой статье мы сравним современные решения для повышения КПД двигателей на основе эффективности работы и экономической целесообразности.

Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.

Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.

Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».

Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.

Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.

Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.

Варианты преобразователей, используемые в современных системах управления электроприводами, различаются по своим функциональным возможностям и эффективности применения. Для электроприводов насосов или вентиляторов, например, часто применяются преобразователи с невысокой перегрузочной способностью и U/f-управлением, способные легко управлять начальным значением напряжения для повышения момента двигателя на низких частотах.

Но для более серьезных применений, таких как на прокатных станах, конвейерах, подъемных устройствах и упаковочном оборудовании, рекомендуется использовать частотные преобразователи с векторным управлением. Они не только могут регулировать частоту и амплитуду выходного напряжения, но и фазы тока через обмотки статора.

Торможение двигателя также может быть контролируемым с помощью специальных функций замедления, главным образом управляемых «частотниками», оснащенными встроенными или внешними блоками торможения и тормозным резистором, а также рекуперативным блоком торможения во время динамического торможения. Такие устройства особенно важны для механизмов станков и конвейеров.

Некоторые комплексные системы, например, в робототехнике, дерево- и металлообработке, используют сложные частотные преобразователи с обратной связью, которые обеспечивают повышенную точность и надежность в замкнутых системах для поддержания постоянной скорости вращения в условиях переменной нагрузки.

Запись о стоимости «частотников»

В настоящее время, по словам финансистов, стоимость «частотников» нестабильна: за последние полтора года цены значительно увеличились. Это обусловлено не только колебаниями валютного курса, но и другими факторами. Например, частотные преобразователи производства России и зарубежных стран мощностью 90 кВт стояли примерно от 200 до 700 тысяч рублей для покупателей в 2021 году.

Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.

Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.

Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.

Контроллеры-оптимизаторы: устройства для плавного пуска

Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.

Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.

Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.

Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

Контроллеры-оптимизаторы – это устройства, которые выполняют функцию регуляторов напряжения для питания электродвигателей. Они предоставляют контроль над фазами напряжения и тока, обеспечивают полное управление приводом на всех этапах работы и защищают его от повышенного и пониженного напряжения, перегрузки, обрыва или нарушения чередования фазы и т.д.

Контроллеры-оптимизаторы также согласовывают значение крутящего момента, развиваемого электродвигателем, с его нагрузкой на валу, путем изменения напряжения для питания двигателя. В процессе регулирования крутящего момента скорость вращения ротора остается прежней, а коэффициент мощности повышается. Это оборудование является функционально законченным и не требует подключения дополнительных устройств.

В период работы привода в условиях динамически изменяющихся нагрузок контроллер обеспечивает прекращение отбора мощности из сети электропитания в те моменты, когда полупроводниковые переходы тиристоров (управляемых диодов) задерживают электрический ток. Размыкание тиристоров происходит периодически при поступлении управляющих сигналов, период, задержка которых определяется относительным значением загрузки привода.

Важно помнить, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *